Student No.: _

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. Let Q be the (solid) rectangle in \mathbb{R}^2 with vertices (1,1), (3,1), (1,4), (3,4). The integral $\int_{\Omega} xy(2x+3y) d^2(x,y) \quad \text{equals}$

344

363

382

401

420

2. With $D = \{(x,y) \in \mathbb{R}^2; x^2 + 4y^2 \le 16, x \ge 0, y \ge 0\}$, the value of $\int_D x^2 y \, d^2(x,y)$ is contained in

[0,5)

[5,10) [10,15) [15,20)

 $[20, +\infty)$

3. Let *S* be the region in \mathbb{R}^2 that lies above the *x*-axis and below the line y = x. The integral $\int_{S} e^{-x^2-y^2} d^2(x,y)$ has the value

 $\pi/8$

 $+\infty$

4. For $I(t) = \int_0^\infty \frac{\ln(x^2 + t)}{x^2 + 1} dx$ the derivative I'(1) is equal to

 4π

5. The limit $\lim_{n\to\infty} \int_0^{\pi/2} \sqrt[n]{\sin(x/n)} dx$ is equal to

 $+\infty$

6. The function $f(x,y) = x^3 + y^3 - 2x^2 + 2xy - y^2 + 3$, $(x,y) \in \mathbb{R}^2$ has in (0,0)

a local minimum

a local maximum

a saddle point

a non-critical point

none of the foregoing

7. The number of critical points of $g(x,y) = xy(1-x^2-y^2)$, $(x,y) \in \mathbb{R}^2$ is $\boxed{}$ 1

9

8. Let E be the tangent plane to the surface xyz + 6 = 0 in (1, -2, 3). Which of the following points minimizes the distance to E?

(0,0,0)

(1,1,1)

(-1,1,1) (1,-1,1) (1,1,-1)

9. The function x = g(y,z) implicitly defined by the equation $x \sin y + y \sin z + z \sin x = 0$ and $g(0,\pi/2) = 0$ has $\nabla g(0,\pi/2)$ equal to

(0,0)

 $(0,-2/\pi)$ $(2/\pi,0)$ $(-2/\pi,0)$ $(0,2/\pi)$

10. The line integral of $y^2 dx + dy$ along the curve $\gamma_{\alpha}(t) = (t, t^{\alpha}), t \in [0, 1]$ equals $\frac{2024}{2023}$ for

 $\alpha = 1000$

 $\alpha = 1010$

 $\alpha = 1011$ $\alpha = 2020$ $\alpha = 2022$

Notes

Green boxes indicate the correct solutions and red boxes (if any) the most frequently made errors. This time Groups A and B were completely identical.

1 Since $Q = [1,3] \times [1,4]$, we have

$$\int_{Q} xy(ax+by) d^{2}(x,y) = a \int_{Q} x^{2}y d^{2}(x,y) + b \int_{Q} xy^{2} d^{2}(x,y)$$

$$= a \int_{1}^{3} x^{2} dx \int_{1}^{4} y dy + b \int_{1}^{3} x dx \int_{1}^{4} y^{2} dy$$

$$= a \frac{3^{3} - 1^{3}}{3} \frac{4^{2} - 1^{2}}{2} + \frac{3^{2} - 1^{2}}{2} \frac{4^{3} - 1^{3}}{3}$$

$$= 65 a + 84 b = 65(a+b) + 19 b.$$

Since a + b = 5 in both groups, the correct answer is

$$325 + 19b = \begin{cases} 325 + 19 \cdot 3 = 382 & \text{in Group A,} \\ 325 + 19 \cdot 2 = 363 & \text{in Group B.} \end{cases}$$

2 Using the polar-like coordinates $x = r\cos t$, $y = (r/2)\sin t$, $\frac{\partial(x,y)}{\partial(r,t)} = \begin{pmatrix} \cos t & -r\sin t \\ (1/2)\sin t & (r/2)\cos t \end{pmatrix}$, which has determinant r/2, one obtains

$$\int_{D} xy \, d^{2}(x, y) = \int_{\substack{0 < r < 4 \\ 0 < \theta < \pi/2}} (r \cos t)^{2} (r/2) \sin t (r/2) \, d^{2}(r, t)$$

$$= \frac{1}{4} \int_{0}^{4} r^{4} \, dr \int_{0}^{\pi/2} \cos^{2} t \sin t \, dt = \frac{4^{5}}{20} \left[-\frac{1}{3} \cos^{2} t \right]_{0}^{\pi/2} = \frac{4^{5}}{60} = \frac{256}{15}.$$

Thus the correct answer is (D).

- **3** The function $(x,y)\mapsto e^{-x^2-y^2}$ is symmetric w.r.t. the lines x=0 and y=x. It follows that its integral over each of the 8 sectors $(k-1)\pi/4 \le \theta \le k\pi/4$, k=1,2,3,4,5,6,7,8, is the same. Since $\int_{\mathbb{R}^2} e^{-x^2-y^2} d^2(x,y) = \pi$, as shown in the lecture, the correct answer must be (A). Of course one can also compute the integral directly using polar coordinates.
- **4** In the lecture it was shown that I(t), which is defined for $t \ge 0$, can be differentiated under the integral sign for t > 0. This gives

$$I'(t) = \int_0^\infty \frac{\mathrm{d}}{\mathrm{d}t} \frac{\ln(x^2 + t)}{x^2 + 1} \, \mathrm{d}x = \int_0^\infty \frac{\mathrm{d}x}{(x^2 + 1)(x^2 + t)},$$

$$I'(1) = \int_0^\infty \frac{\mathrm{d}x}{(x^2 + 1)^2}.$$

This integral can be evaluated using integration by parts and has the value $\pi/4$. If you don't remember how to do this, observe that $\frac{1}{(x^2+1)^2} < \frac{1}{x^2+1}$ for x > 0, and hence that the value of this integral must be smaller than $\int_0^\infty \frac{\mathrm{d}x}{x^2+1} = [\arctan x]_0^\infty = \pi/2$. This leaves only (A) as possible answer.

Alternatively, if you remember the result $I(t) = \pi \log(\sqrt{t} + 1)$ from the lecture, use this to compute $I'(1) = \frac{\pi}{2\sqrt{t}(\sqrt{t}+1)}\Big|_{t=1} = \pi/4$.

5 We show the solution for Group A. Since $\sin(x/n) = (x/n)\cos\xi$ with $\xi \in (0, x/n)$ and $\lim_{n\to\infty} \sqrt[n]{x} = \lim_{n\to\infty} \sqrt[n]{n} = 1$, we obtain $\sqrt[n]{\sin(x/n)} \to 1$ for $n\to\infty$ at all points $x\in(0,\pi/2]$. (For x=0 the

limit is 0.) Since $0 \le \sqrt[n]{\sin(x/n)} \le 1$ and the constant function 1 is integrable over $[0, \pi/2]$, we can apply Lebesgue's Dominated Convergence Theorem to conclude

$$\lim_{n \to \infty} \int_0^{\pi/2} \sqrt[n]{\sin(x/n)} \, \mathrm{d}x = \int_0^{\pi/2} \lim_{n \to \infty} \left(\sqrt[n]{\sin(x/n)} \right) \, \mathrm{d}x = \int_0^{\pi/2} 1 \, \mathrm{d}x = \pi/2.$$

In Group B the integration is over $[0,\pi]$, and hence the correct answer (derived in the same way) is π .

6 Use

$$\mathbf{H}_f(x,y) = \begin{pmatrix} 6x - 4 & 2 \\ 2 & 6y - 2 \end{pmatrix}, \quad \mathbf{H}_f(0,0) = \begin{pmatrix} -4 & 2 \\ 2 & -2 \end{pmatrix}, \quad \det \mathbf{H}_f(0,0) = 4 > 0,$$

or observe that the Hesse quadratic form of f is a positive multiple of $-2x^2 + 2xy - y^2 = -2(x+y/2)^2 - y^2/2$, which is negative definite.

7 The 0-contour is the union of the lines x = 0, y = 0, and the unit circle. The five intersection points (0,0), $(\pm 1,\pm 1)$, must be critical points, because the 0-contour isn't smooth there. Moreover, on each of the 4 quarter disks determined by the 0-contour the function g, which is continuous, attains a maximum. Since g is positive in the interior of the quarter disk, the maximum can't be on the boundary and hence must be a critical point. Thus g has at least 9 critical points, so that the correct answer must be (E)

8 The tangent plane to xyz + 6 = 0 in (x_0, y_0, z_0) has equation $y_0z_0(x - x_0) + x_0z_0(y - y_0) + x_0y_0(z - z_0) = 0$. Plugging in $(x_0, y_0, z_0) = (1, -2, 3)$ gives -6(x - 1) + 3(y + 2) - 2(z - 3) = 0, or 6x - 3y + 2z = 18 as an equation for *E*. With $\mathbf{n} = (6, -3, 2)$ and $\mathbf{p} \in E$ the distance from \mathbf{b} to *E* is

$$|\operatorname{proj}_{\mathbf{n}}(\mathbf{b} - \mathbf{p})| = \left| \frac{(\mathbf{b} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n} \right| = \frac{|\mathbf{b} \cdot \mathbf{n} - \mathbf{p} \cdot \mathbf{n}|}{|\mathbf{n}|} = \frac{|6b_1 - 3b_2 + 2b_3 - 18|}{7}.$$

It is minimized for the point (1,-1,1), and the minimal distance is 1 (coincidence?).

9 For $F(x,y,z) = x\sin y + y\sin z + z\sin x$ we have $F(0,0,\pi/2) = 0$, $F_x = \sin y + z\cos x$, $F_x(0,0,\pi/2) = \pi/2 \neq 0$, so that g(y,z) is well-defined in a neighborhood of $(0,\pi/2)$. The formulas for implicit differentiation yield $g_y = -F_y/F_x = -\frac{x\cos y + \sin z}{\sin y + z\cos x}$, $g_z = -F_z/F_x = -\frac{y\cos z + \sin x}{\sin y + z\cos x}$, and hence

$$\nabla g(0,\pi/2) = \left(-\frac{F_y(0,0,\pi/2)}{F_x(0,0,\pi/2)}, -\frac{F_z(0,0,\pi/2)}{F_x(0,0,\pi/2)}\right) = (-2/\pi,0).$$

10 As shown in the lecture (on the last slide shown on Mon Dec 18) the line integral along γ_{α} has the value $1 + \frac{1}{2\alpha + 1} = \frac{2\alpha + 2}{2\alpha + 1}$. Hence the correct answer is (C).