Student No.: _____

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. The area of the parallelogram spanned by (1, a, 2) and (a, 1, 2) is equal to 9 for

$$a = -2$$

$$a = -1$$

$$a = -1$$
 $a = 0$

$$a=1$$

$$a=2$$

2. The distance from the point (1,2,6) to the plane spanned by (2,1,0), (0,2,1), (1,0,2) is equal to

$$\sqrt{2}$$

$$\sqrt{3}$$

$$2\sqrt{3}$$

$$3\sqrt{2}$$

3. The distance from the point (2,2,6) to the line 2x+y=2y+z=1 is equal to

$$\frac{1}{3}\sqrt{6}$$

$$\sqrt{6}$$

$$\frac{7}{3}\sqrt{6}$$

$$3\sqrt{6}$$

4. $\mathbf{A} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$ satisfy $\mathbf{A}\mathbf{v} = -\mathbf{v}$ if $\begin{vmatrix} \phi = 22.5^{\circ} & \phi = 45^{\circ} & \phi = 67.5^{\circ} & \phi = 90^{\circ} & \phi = 112.5^{\circ} \end{vmatrix}$

$$\phi = 22.5^{\circ}$$

$$\phi = 45^{\circ}$$

5. The smallest distance d^* from the curve $f(t) = (1,0,0) + t(1,-1,0) + t^2(0,1,-1), t \in$ \mathbb{R} to the origin satisfies

$$\left|d^*=0
ight. \qquad \left[d^*\in \left(0,rac{1}{2}
ight) \qquad \left[d^*=rac{1}{2} \qquad \left[d^*\in \left(rac{1}{2},1
ight) \qquad \left[d^*=1
ight.$$

$$d^* = 1$$

6. The maximum curvature of the curve f(t) in Question 5 is

$$\frac{4}{3}\sqrt{2}$$

$$16\sqrt{3}$$

$$2\sqrt{6}$$

$$\frac{3}{4}\sqrt{3}$$

$$8\sqrt{3}$$

7. The tangent to the curve $g(t) = (t, t^2, t^4), t \in \mathbb{R}$ in the point (1, 1, 1) intersects the plane ax + y - 2z = 2023 unless

$$a = 10$$

$$a=1$$

$$a = 6$$
 $a = 3$

$$a = 3$$

$$a=0$$

8. For the twisted cubic $f(t) = (t, t^2, t^3)$, $t \in \mathbb{R}$ the unit normal vector $\mathbf{N}(1)$ is a positive multiple of

$$[-11, 8, 9)$$

$$[11, 8, -9]$$

$$[11, -8, 9]$$

(-11, -8, 9)

9. The arc length of the curve $g(t) = (3t\sin(2t), 4t^{3/2}, 3t\cos(2t)), t \in [0, 5]$ is

30

10. For a differentiable curve $\gamma = \gamma(t)$ in \mathbb{R}^3 the derivative $\frac{d}{dt}(|\gamma|^2\gamma)$ is equal to

$$2\gamma + |\gamma|^2 \gamma$$

$$\boxed{2(\gamma\cdot\gamma')\gamma+(\gamma\cdot\gamma)\gamma'}$$

Wte prepared by Jianni Tu.

1. The area of the parallelogram spanned by (1, a, 2) and (a, 1, 2) is equal to 9 for

$$a = -2$$

$$a = -1$$

$$a=0$$

$$a=1$$

$$a = 2$$

Aren = 16/. h = 12/16/sinp

$$[e+ \vec{n} = (1, \alpha_1 z)] = [\alpha_1 (1, z)]$$

$$\vec{b} = (\alpha_1(1, 2))$$

$$= |\langle 2\alpha - 2, 2\alpha - 2, |-\alpha^2 \rangle| = 9$$

$$(2\alpha-2)^{2}+(2\alpha-2)^{2}+(1-\alpha^{2})^{2}=81$$

2. The distance from the point (1,2,6) to the plane spanned by (2,1,0), (0,2,1), (1,0,2) is equal to

$$\sqrt{2}$$

$$2\sqrt{3}$$

$$3\sqrt{2}$$

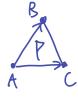
How to calculate representations of a plane. & Recall

> **7** A scalar equation of the plane through point $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

What we need: $\int normal vector \vec{n}$ of the plane \Rightarrow the representation of a plane

For this question, let
$$\overrightarrow{A} = (2,1,0)$$
 $\overrightarrow{B} = (0,2,1)$ $\overrightarrow{C} = (1,0,2)$



$$\overrightarrow{AC} = (-1, -1, 2)$$
 $\widehat{3} = \widehat{3} = (-1, -1, 2)$ $\widehat{3} = (-1, -1, 2)$ Then $\overrightarrow{N} = \overrightarrow{AB} \times \overrightarrow{AC} = (-1, -1, 2)$

Then
$$\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{bmatrix} -2 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$= (3,3,3) = 3(1,1,1)$$

Also, we know that the plane passes point ((1,0,2)

The representation of the plane is: P: I(x-1)+I(y-0)+I(z-2)=0

A Recall the distance from a point to a plane.

The distance *D* from the point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

In this question, P. is P. (1,2,6)

Thus,
$$D = \frac{|ax_1 + by_1 + (z_1 + d)|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|1 + 2 + 6 - 3|}{\sqrt{1 + 1 + 1}} = \frac{6}{\sqrt{5}} = 2\sqrt{5}$$

Alternatively, we can also use the following formula directly:

n= (a,b,c) Normal vector of the plane

$$D = |\operatorname{comp}_{\mathbf{n}} \mathbf{b}| = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}$$

$$= \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{|(ax_1 + by_1 + cz_1) - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

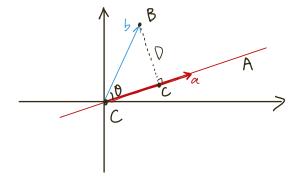
3.	The distance from the	point $(2, 2, 6)$) to the line	2x + y = 2y + z = 1	is equal to

The distance from the point
$$(2,2,6)$$
 to the line $2x+y=2y+z=1$ is equal to
$$\boxed{\frac{1}{3}\sqrt{6}} \qquad \boxed{\sqrt{\frac{5}{3}\sqrt{6}}} \qquad \boxed{\frac{7}{3}\sqrt{6}} \qquad \boxed{3\sqrt{6}}$$

Thus,
$$L = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c \\ 1-2c \\ -1+4c \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + c \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$
 where $C \in \mathbb{R}$

Supz. calculate the distance.

Recall: (3) point B to line A:
$$D = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}|}$$
 where \vec{a} is the direction vertor of the line \vec{b} is the vertor Stort from a point on line A, end at point B



In this question,
$$\vec{a} = (1, -2, 4)$$

To combe:
$$(2,2,6)-(0,1,-1)=(2,1,7)$$

the point we are interested in An arbitrary point on the line.

Thus,
$$D = \frac{|\vec{a}| \times |\vec{b}|}{|\vec{a}|} = \frac{|\vec{i}| \hat{j} |\vec{k}|}{|\vec{i}| + 4 + 16} = \frac{|\vec{c}| \cdot |\vec{b}|}{|\vec{a}|} = \frac{|\vec{a}|}{|\vec{a}|} = \frac{|$$

& Recall: switching between two different wordinate systems.

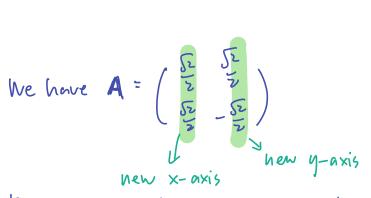
Observation

 $O' \triangleq \mathbf{p} = (p_1, p_2)$ for some $\mathbf{p} \in \mathbb{R}^2$ and the new unit coordinate directions are represented by $\mathbf{p} + \mathbb{R}\mathbf{a}$, $\mathbf{p} + \mathbb{R}\mathbf{b}$ with \mathbf{a} , $\mathbf{b} \in \mathbb{R}^2$ orthogonal and of the same length.

 \implies A point Q with new coordinates (x'_1, x'_2) has old coordinates

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{p} + x_1' \mathbf{a} + x_2' \mathbf{b} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} + x_1' \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + x_2' \begin{pmatrix} b_1 \\ b_2 \end{pmatrix};$$

In this guestion, let
$$\begin{vmatrix} \overrightarrow{v} \\ \overrightarrow{v} \end{vmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
 old coordinate



For $\phi = 112.5^{\circ}$, As shown in the graph.

$$Av = -v$$

Himmanively, Recall Reflection matrix
$$S(\phi) = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{pmatrix} = \mathbf{A}$$

Here
$$\phi = 45^{\circ}$$
, the reflection axis should be $y = +an(22.5^{\circ}) \times Thus$, for $\vec{V} = (\cos\theta, \sin\theta)$, $\theta = 22.5^{\circ} + 90^{\circ} = 112.5^{\circ}$

5. The smallest distance d^* from the curve $f(t) = (1,0,0) + t(1,-1,0) + t^2(0,1,-1), \ t \in \mathbb{R}$ to the origin satisfies

f(t) lies on the plane
$$P = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
 $C_1, C_2 \in \mathbb{R}$

Distance from the origin to the plane

Thus
$$D = \frac{|ax_1 + by_1 + (z_1 + d)|}{\sqrt{a^2 + b^2 + c^2}} = \frac{1}{\sqrt{z}} > \frac{1}{z}$$

Then, we need to determine if there's a point on the curve makes d*< 1

$$f(t) = \begin{pmatrix} 1+t \\ -t+t^2 \\ -t^2 \end{pmatrix}$$

$$d = \int (|+t|^2 + (-t+t^2)^2 + (-t^2)^2 = \int 2t^4 - 2t^3 + 2t^2 + 2t + 1$$

Thus,
$$d^* \in (\frac{1}{2}, 1)$$

6. The maximum curvature of the curve f(t) in Question 5 is

$$\frac{4}{3}\sqrt{2}$$

$$16\sqrt{3}$$

$$2\sqrt{6}$$

$$\frac{3}{4}\sqrt{3}$$

$$8\sqrt{3}$$

DRecall:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \qquad \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \qquad \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

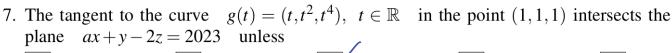
$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

Hore
$$r(t) = (t+1, t^2 - t, -t^2)$$

 $r'(t) = (t+1, t^2 - t, -t^2)$
 $r''(t) = (t+1, t^2 - t, -t^2)$
 $r''(t) = (t+1, t^2 - t, -t^2)$

Thus,
$$k = \frac{|r'(4) \times r''(4)|}{|r'(4)|^3} = \frac{|\langle 2, 2, 2 \rangle|}{(8t^2 - 44t^2)^{\frac{3}{2}}} = \frac{2\sqrt{3}}{(8t^2 - 44t^2)^{\frac{3}{2}}}$$

| let
$$g(t) = 8t^2 - 4t + 2$$
| let $g'(t) = 16t - 4 = 0$ => $t' = \frac{1}{4}$, Kmax



$$a = 10$$

$$a=1$$
 $a=6$

$$a=3$$

$$a = 0$$

A The tongent line to a curve on
$$g(t)$$
: $T = g(t) + Rg'(t)$

Thus, the tangent line at
$$(1,1,1)$$
 is $T = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + R \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

T has direction vector:
$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

For the plane
$$0 \times 1 \times 1 - 2 = 2023$$
, normal vertor $n = \begin{pmatrix} n \\ -2 \end{pmatrix}$

8. For the twisted cubic
$$f(t) = (t, t^2, t^3), t \in \mathbb{R}$$
 the unit normal vector $\mathbf{N}(1)$ is a positive multiple of

$$(-11, 8, 9)$$

$$(11,8,-9)$$
 $(11,-8,9)$

$$(11, -8, 9)$$

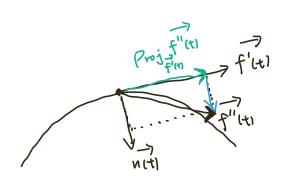
$$(-11, 8, -9)$$

$$(-11, -8, 9)$$

$$\frac{1}{n(t)} = f''(t) - \frac{1}{n(t)}$$

$$\frac{1}{|f'(t)|} = \frac{1}{|f''(t)|} = \frac{1}{$$

How to understand equation 0:



For air, it can be decomposed to

ar + anyent acceleration.

has some direction of n(+)

Thus, in this question here,

$$\vec{N}(0) = \vec{F}''(0) - \frac{\vec{F}''(0) \cdot \vec{F}''(0)}{|\vec{F}''(0)|} \cdot \frac{\vec{F}''(0)}{|\vec{F}''(0)|}$$

9. The arc length of the curve $g(t) = (3t\sin(2t), 4t^{3/2}, 3t\cos(2t)), t \in [0, 5]$	9.	The arc length of the curve	g(t) =	$3t\sin(2t), 4t^{3/2}, 3t\cos(2t), t \in$	[0, 5]	is
--	----	-----------------------------	--------	---	--------	----

30

45

60

75

90

$$L = \int_a^b |\mathbf{r}'(t)| dt$$

=
$$3\int_{0}^{5} (1+2t) dt = 3(t^{2}+t) \int_{0}^{5} = 90$$

10. For a differentiable curve $\gamma = \gamma(t)$ in \mathbb{R}^3 the derivative $\frac{d}{dt} \left(|\gamma|^2 \gamma \right)$ is equal to

 $2\gamma + |\gamma|^2 \gamma$

 $2(\gamma \cdot \gamma')\gamma + (\gamma \cdot \gamma)\gamma'$

 $2|\gamma|\gamma + |\gamma|^2\gamma'$

 $2|\gamma|\gamma' + (\gamma \cdot \gamma)\gamma'$

 $\frac{d}{dt}(|Y|^2t) = \frac{d}{dt}((8.8).7) = (8't+86')8+(8.8).5'$ = 2(8't)8+(8.8).5'

$$\frac{|\beta|^2}{|\beta|^2} + \frac{|\beta|^2}{|\beta|^2} = \frac{|\beta|^2}{|\beta|^2} - \frac{|\beta|^2}{|\beta|^2}$$

$$|\gamma| = (|r \cdot r|)' = 2|r \cdot r'$$

$$= |r \cdot r'|$$

$$= |r \cdot r'|$$

$$= |r \cdot r'|$$

$$\int \left(L_{i} \right) = \frac{\left(L_{i} \right)}{\left(L_{i} \right)}$$

$$\frac{1}{\sqrt{|r|}} = \frac{1}{|r|^2} = \frac{1}{|r|^2} = \frac{1}{|r|^2}$$