Minimization

Lecture Topics

- K-maps
- Minimization

Reading assignments

• Lumetta Set 2.1: Optimizing Logic Expressions

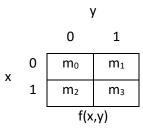
Karnaugh maps

- Karnaugh map, or K-map, is an alternative representation of truth table
 - o Lists cells in *Gray code* order
 - Each cell corresponds to a minterm (row of the truth table)
- Two-variable Boolean function example:
 - o four possible minterms, which can be arranged into a Karnaugh map

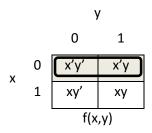
Conventional truth table for 2-variable function

х	У	f(x,y)
0	0	m ₀
0	1	m ₁
1	0	m ₂
1	1	m ₃

Corresponding K-map representation



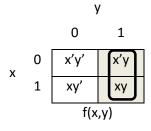
- Now we can easily see which minterms contain common literals.
 - Minterms in column 0 and 1 contain y' and y respectively.
 - Minterms in row 0 and 1 contain x' and x respectively.
- Imagine a two-variable sum of minterms: x'y' + x'y
 - Both of these minterms appear in the top row of a Karnaugh map, which means that they both contain the literal x'



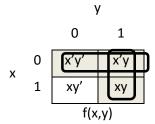
What happens if you simplify this expression using Boolean algebra?

$$\circ$$
 $x'y' + x'y = x'(y' + y) = x' • 1 = x'$

- Another example expression is x'y + xy
 - o Both minterms appear in the right side, where the literal y is common
 - \circ Thus, we can reduce x'y + xy to just y



- Another example x'y' + x'y + xy
 - We have x'y', x'y in the top row, combine along row to get x'
 - o There is also x'y, xy in the right side, combine along column to y
 - \circ This whole expression can be reduced to x' + y



• Similarly, we can obtain K-maps for 3- and 4-variable Boolean functions

			У	Z	
		00	01	11	10
х	0	m ₀	m ₁	m ₃	m ₂
^	1	m ₄	m ₅	m ₇	m ₆
			f(x,	y,z)	

00 m_1 01 m_{4} $m_{\scriptscriptstyle 5}$ m_7 m_6 11 $m_{12} \\$ m_{13} m_{15} m_{14} 10 m_9 $m_{11} \\$ m_8 m_{10}

01

00

f(w,x,y,z)

yΖ

11

10

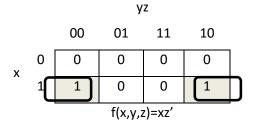
• Some examples of 3-variable functions represented with K-maps

		yz			
		00	01	11	10
х	0	1	1	0	0
^	1	1	1	0	0
		f(x,y,z)=y'			

		yz			
		00	01	11	10
х	0	0	0	0	0
^	1	1	1	1	1
		f(x,y,z)=x			

		yz				
		00	01	11	10	
х	0	0	1	0	0	
^	1	0	0	0	0	
		f(x,y,z)=x'y'z				

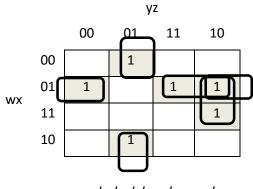
		yz					
		00	01	11		10	
х	0	0	0	0		1	
^	1	0	0	0		1	
		f(x,y,z)=yz'					



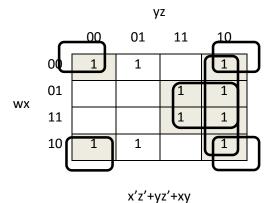
• Observation: product terms correspond to rectangles

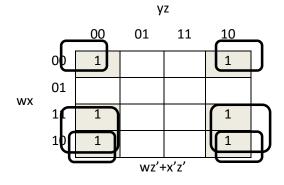
Rectangles	Cells	Literals in term
2x2 or 1x4	4	1
2x1 or 1x2	2	2
1x1	1	3

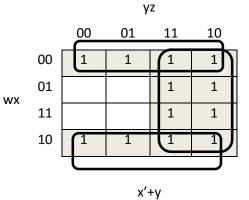
• Some examples of 4-variable functions represented with K-maps



w'xz'+x'y'z+w'xy+xyz'



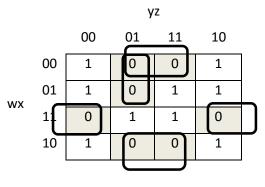




Product terms correspond to rectangles

0	Rectangles	Cells	Literals in term
	4x2 or 2x4	8	1
	4x1 or 2x2 or 1x4	4	2
	2x1 or 1x2	2	3
	1x1	1	4

Sum terms correspond to rectangles too:



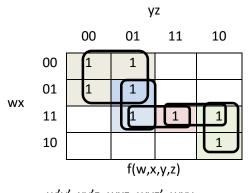
$$(w'+x'+z)(x+z')(w+y+z')$$

- Why Grey code ordering?
 - With this ordering, any group of 2, 4, 8, 16, ... adjacent cells on the map contains common literals that can be factored out.
 - "Adjacency" includes wrapping around the left and right sides.

Function simplification

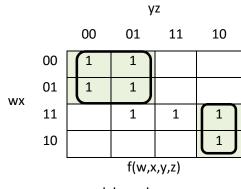
- K-maps is a great tool for simplifying Boolean expressions
- A product term is an *implicant* of a function if the function has the value 1 for all minterms of the product term
 - o In terms of K-map, implicants correspond to all legal loops
- An implicant is a prime implicant if it is not contained within a larger implicant
 - o In terms of K-map, prime implicants correspond to all biggest loops
- If a minterm is included in only one prime implicant, then it is an essential prime implicant
 - In other words, a prime implicant is essential if it covers some 1-cell for which no other prime implicants cover that cell
- Example:

Prime implicants



w'y', xy'z, wxz, wyz', wxy

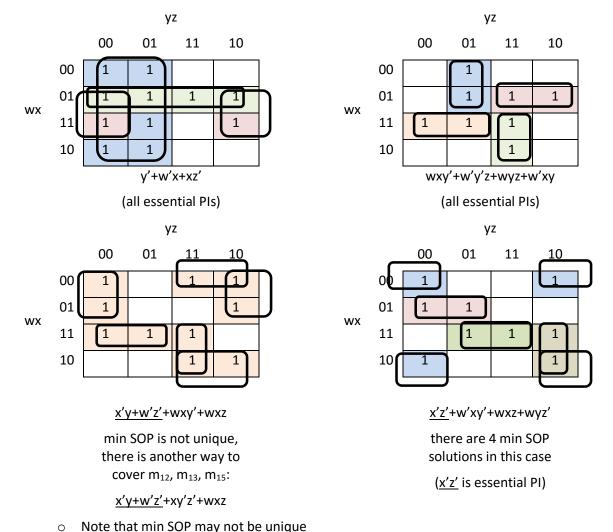
Essential prime implicants



w'y', wyz'

- An SOP (or POS) expression is minimal if
 - o It has the minimum number of product (sum) terms, and
 - o Among expressions with minimum number of terms, it has fewest literals

- A minimal SOP expression is a sum of prime implicants. It consists of
 - o All the essential prime implicants, and
 - As few as possible other prime implicants
- Procedure for finding minimal SOP representation
 - Find all essential prime implicants
 - For each 1 which has not yet been circled:
 - Is it covered by only one prime implicant? (i.e., there is no choice how to circle that 1?)
 - o If yes, that prime implicant is essential and must be a term in any minimal SOP representation
 - o Cover the remaining 1's using as few prime implicants as possible
 - o In other words, find minimum number of rectangles to cover all 1's in K-map, each rectangle as large as possible
- Minimal SOP examples:



• Minimal POS examples:

