University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Representations and Bits

Represent One Type of Information with Another

We often represent one type of information with other patterns, physical quantities, and so forth.

examples

- English letters represented by drawn patterns
- colors represented by variations in radio signal amplitude

The mapping from one form to another is called a representation.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 1

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

elido 2

Knowing the Representation May Help You

The code above is called a tic-tac-toe code: each letter (information) is represented by a drawing (pattern).

What Do We Need to Make a Representation Useful?

What properties are necessary for a representation to be useful?

Hints:

- Think about the tic-tac-toe code.
- Think about algorithm properties.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

First Answer: Representations Must be Well-Defined

All users must know the translation in advance.

Our goal is communication, not obfuscation.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 6

Some Mappings May Not be Usable by Computers

(0	1	2	3	4	5	6	7	8	9
A	4	В	\mathbf{C}	D	E	F	G	Η	I	J
I	K	\mathbf{L}	\mathbf{M}	N	O	P	Q	\mathbf{R}	\mathbf{S}	\mathbf{T}
J	J	V	W	X	Y	\mathbf{Z}				

If we use 10 digits to represent 26 letters as shown above, what does "143" mean?

BED? BOX? VYN?

Computers are dumb—they cannot guess.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 7

Second Answer: Representations Must be Unambiguous


Each pattern must represent at most one thing.

But Some Patterns May Represent Nothing

In the representation below, the digits 0, 2, 7, 8, and 9 represent no color.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 8

ECE 120: Introduction to Computing

© 2016-2017 Steven S. Lumetta. All rights reserved.

slide 9

Computers are Based on Electrons

In digital systems, electrons are **all V**_{dd} we have to represent information!

What can you ask about electrons?

How many electrons are in a certain place? (related closely to voltage)

So...

ECE 120: Introduction to Computing

- Choose a ground: 0V by definition.
- $_{\circ}$ Pick a higher voltage (called $V_{dd}).$ $\;$ OV $\mbox{\ }$

ain (voltage) 0

© 2016 Steven S. Lumetta. All rights reserved.

slide 10

Computer Representations are Based on BInary digiTs

Now ask:

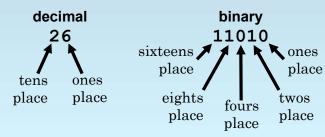
At a given physical location, what is the voltage?

Voltage near V_{dd} is a "1."

Voltage near 0V is a "0."

The location thus holds a binary digit, which we call a **bit**.

© 2016 Steven S. Lumetta. All rights reserved.


0V

slide 11

Physical Locations Enable Place Value

Each bit is somewhere on a computer chip.

So using positional / place value is natural.

Represented by What? The Answer is Always "Bits"

Remember:

ECE 120: Introduction to Computing

- Electrons are all we have inside computers.
- No decimal, no hexadecimal, no letters, no real numbers, no colors.
- ALL computer representations are based on bits.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12 ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 13

A Question for You: How Many Bits do We Need?

How many bits do we need to represent a whole number in the range...

- from **0 to 31**?
- 32 different integers
- \circ so we need 5 bits (2⁵ = 32 bit patterns)
- from **0 to 100**?
- 101 different integers
- \circ so we need 7 bits (2⁷ = 128 bit patterns)

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved

We Need One Bit Pattern for Each Possible Thing

Trick question: How many bits do we need to represent two books?

- The Collected Works of Shakespeare
- Our textbook by Patt & Patel
- 2 different books
- \circ so we need only 1 bit! (2¹ = 2 bit patterns)

What matters is the **number of things**, not what those things are.

slide 14

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

elido 15

How Many Bits Do We Need to Represent N Things?

Let's test your understanding (and generalize)!

How many bits do we need to represent...

- a whole number from 1000 to 1100? 101 different integers, so **7 bits** ($2^7 = 128$)
- one of 199 flavors of ice cream? 199 different flavors, so 8 bits $(2^8 = 256)$
- a living person?
- 7-8 billion people, so 33 bits ($2^{33} > 8$ billion)
- N things?
- [log₂ N] (ceiling / integer at least as large as log base 2 of N)

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 16